Detecting and Correcting Errors in Functional Units
Performing Composable Operations

Lou Scheffer
Cadence

ABSTRACT

In the operation of a DSM chip, there is the possibility of
transient errors. This paper proposes a new way to de-
tect and/or correct such errors. If we must do N identi-
cal composable operations, we can detect errors by doing
1 additional similar operation, and both detect and correct
errors by performing about log2(N) additional operations.
For example, suppose an algorithm requires performing 1000
FFTs. With one additional FFT, we can verify that all
FFTs were performed correctly. With 10 additional FFTs
(performed on various linear combinations of the input data)
we can detect which, if any, FFT was wrong, and compute
the correct answer without re-doing the incorrect computa-
tion. This result holds whether the results are computed in
one cycle or many, sequentially or in parallel, or in hardware
and software.

Categories and Subject Descriptors

J.6 [Computer Applications]: Computer Aided Engi-
neering

General Terms

Algorithms, Performance, Design, Verification

Keywords
XXX XXX, XXX vXXX, SXXX tXXX, YXXX

1. INTRODUCTION AND MOTIVATION

In the operation of DSM chips, there is the possibility of
transient errors. These are most commonly caused cosmic
rays, alpha particles, or neutrons that impinge upon the chip
and cause transient data errors or upset the state of one or
more flip-flops. This is commonly called Single Event Up-
set, or SEU. Not surprisingly, this problem is most common
in systems exposed to radiation (such as space based sys-
tems) but occur (more rarely) even at ground level[6]. As

Permission to make digital or hard copies of all or part of this work for

dimensions scale down this problem will become worse since
smaller and smaller disturbances can cause these problems,
and some sources (such as neutrons) cannot be eliminated
by any practical amount of shielding. We would like a way
to detect, and if possible correct, such errors. many such
methods have been proposed, but they require significant
overhead. In this paper we propose a cheaper method of
performing such detection and correction.

We start by observing that if we perform N identical
operations on different pieces of data, we may be able to
detect an error by performing the equivalent of a check-
sum. The critical property is composability, which allows
us to check the results of N operations by doing one ad-
ditional operation. The classic composable operation is a
linear one where F(a + b) = F(a) + F(b). This implies
Fla+b+c) = F(a) + F(b) + F(c), and so on. Thus one
additional F'() operation can be used to check the results
of any number of F() operations. More generally, we re-
quire two (possibly identical) operations @ and ® such that
F(a®b) = F(a)®F(b). An example of a non-linear but com-
posable function is exp() since exp(a + b) = exp(a) - exp(b).

Are enough operations composable to make this approach
worthwhile? The answer depends on the application, of
course, but in many cases it seems true. Composable op-
erations include any linear operation and a significant num-
ber of other mathematical operations. All linear operations
are composable, including such common operations such as
FFTs, DCTs, wavelet transforms, and many matrix opera-
tions. Speech encoding and adaptive optics are dominated
by FFTs, a linear operation. Video encoding is full of DCTs
(discrete cosine transforms). MPEG-2 spends up to 35% of
its time in DCTs[9, 7]. Decomposition into wavelets is now
common in many encodings. Many multimedia operations
apply a given digital filter to many samples. All of these are
linear operations, and hence composable.

1.1 Previous work

It is well known' that almost all commonly used boolean
codes can be extended to work when the symbols are real
or complex numbers instead of binary digits [5]. This work
extends this idea by replacing the channel with arbitrarily
complex operations, provided they are composable.

Another closely related work is on Algorithm Based Fault

personal or classroom use is granted without fee provided that copies areTolerance (ABFT), introduced by Huang and Abraham[4].
not made or distributed for profit or commercial advantage and that copies A¢ the name implies, this is intended to protect the exe-

bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.
ICCAD 2003November 9-13, 2003, San Jose, California, USA.
Copyright 2003 ACM 1-58113-526-2/02/001%5.00.

cution of a single algorithm by adding ’checksums’, usually
linear functions of the input. These checksum values are

! Among a small circle of specialists, that is.

OP
b F(b)
()
c F(c)
()
0 if no
—* error

}op
T Fla+b+c) =

F(a)+ F(b) + F(c)

Figure 1: Example of real valued parity check

predictably transformed by the operation, and can there-
fore be used to detect and possibly correct errors. Matrix
multiplication was the first algorithm this was applied to,
but research is actively extending the set. The REE group
at JPL, for example, is looking at techniques for numeri-
cal linear matrix multiplication, LU decomposition, QR de-
composition, single value decomposition (SVD), and Fast
Fourier Transforms (FFT).

Beckmann[2] and Hadjicostis[3] generalize these methods
to protect operations that are operations over groups, rings
and fields. Since the real numbers form a field, a vector of
real numbers under component-wise operations will also be
a field. In this way the work of this paper can be viewed in
these more theoretical frameworks.

The current work differs from previous work in ABFT in
two ways. We try to correct not a single operation, but N
identical operations, all working on different data. Further-
more, there is no need to design the checksum for a particu-
lar algorithm. This technique works with any algorithm, as
long as it is composable.

2. THE IDEA

The first example is a parity check for composable oper-
ations. Suppose we have N complicated, but composable,
operations, to be done on independent data. In this exam-
ple we will use FFTs as an example of such an operation,
though any composable operation will work. We wish to
verify that all N operations were done correctly. We can
detect any single error with one additional FFT. We sum
all the inputs of all the FFTs, and tranform that. After the
FFTs, we add all the spectra and compare the sum to the
transform of the sum of the inputs. By linearity, the two
results should be equal. This is shown in Figure 1.

If the sum does not match, one of the FFTs was wrong,
though we have no idea which one (in fact, all the data might
be right, and only the checksum FFT is wrong). In the
binary case, we can detect all errors where an odd number
of the entries are wrong, and will falsely claim no error in
the cases where an even number of entries are incorrect.
The linear system will presumably do better than this if the
linear operations are real values, because (unlike binary)
the odds of two errors cancelling in the checksum should be
negligable.

Error Locating

£rB S1= (R34R5+R7 —R1 I= 0)

82 = (R3+R6+R7 —R2 1= 0)
S4 = (R5+R6+R7 — R4 I= 0)

[FIR!
L

A+C4D [TR2
7y

A [F1R2
Lol

B+C+D [T|R4
Ll

B [F]RS
L)

c DF R6

D [F1RY
Ll

Figure 2: Error Correcting code for Composable
Operations

With a little more work we can determine which FFT
was bad and what the correct answer is. We need to add
log, N check inputs, each picked from a subset of all pos-
sible input sums. If we pick them properly, the pattern of
wrong answers tells precisely which operations were incor-
rect. One good encoding is shown in Figure 2. This is based
on the Hamming code, with the XOR operations (addition
MOD 2) replaced by addition over real or complex numbers.
There are 4 data results and 3 check results, any of which
might be wrong. The three checksums are evaluated with a
wrong answer corresponding to a 1 and a right answer to a
0. (This is called a ’syndrome’ in coding theory.) If all three
are 0, then the answer is correct (or, less likely, a multiple
cancelling error occured). If not all answers match, then
these three resulting bits form a number in binary that is
the index of the wrong bit.

For example, suppose that in figure 2, FFT 5 gave a wrong
result. Then the syndrome computation gives S1 =1, S2 =
0, and S4 = 1. Interpreting these as a binary number gives
5, which is the index of the bad FFT. Once we know this
one is bad, we can recompute it as R1 — R3 — R7.

In the binary case, this code will not detect double errors
- it will think it is an (incorrect) single error, and fix the
wrong thing. The same will happen here. Any possible
error must result in one of the eight possible output states
- no error, or one of the 7 bits in error. This can be solved,
as in the binary case, by adding an overall checksum. The
added redundancy allows two or more errors to be (usually)
detected. You simply correct the single error as usual and
see of the corrected value now satisifies the overall parity
checksum. If not, there was more than one error. As in the
binary case, this will detect most multi-entry errors as well.

3. USES

The most obvious use is to protect against single event
upset. If the application can deal with a certain amount
of incorrect results, a checksum may be all that is needed.
(Many audio or video applications fall into this class. If the
data is known bad, interpolation or some other estimate can
be used. If errors are rare this hurts the quality very little.)
If the application needs all correct answers, then the more
complex error correcting codes can be used.

Another use of this same principle is to protect against er-

rors in distributed systems (Such as Seti@home). In SETI@home

version 3.03, processing a work unit involves performing
about 31,560 FFTs[1]. In SETI@home, work is distributed
to a large number of not necessarily trustworthy computers.
They can make unintentional errors, of course, buth there
is a worse problem - cheating. Since there is a contest with
fame and fortune for the group who does the most work,
some people cheat and return a null result without actually
doing the work. Since the great majority of work units will
return a null result anyway, this is very difficult to spot.
The techniques here provide an easy way to verify that the
users have at least done the linear portion of the task (all the
FFTs), without taking much compute power or bandwidth.

For example, we can calculate a signature by summing
all the bins of all the outputs of all the FFTs. This is a
linear function of the inputs. So if we want to check 1000
work units for accuracy, we can sum the 1000 inputs, do the
FFTs and sums on that. For the jobs done remotely, we each
returns the signature. We sum these, and if it matches the
signature of the summed inputs, all 1000 were done correctly.
If we are willing to do 10 extra FFTs, (each over a different
input subset), then if we get an error we can figure out which
one was bad, and what the result should have been. With
11 extra FFTs, we can also detect the cases where 2 or more
computations are in error.

4. PRACTICAL CONSIDERATIONS

Most of the operationw we might try to protect are not
exactly linear. Most floating point operations, for example,
involve at least rounding. As a result of these non-linarities,
the exact cancellation of Fig. 1 will not happen in practice.

Take, for example, the FFT of the previous examples.
This will be slightly non-linear. Therefore we cannot say
we have an error if the checksum is not exactly 0. We need
to set a threshold, which we expect no normal operation to
cross, that defines an error. If the data are independent,
then the non-linarities can be expected to be about sqrt(N)
times bigger than the non-linearities of a single FFT. If we
combine 16 FFts, for example, the moise will be about 4
times bigger. Therefore we will not see an error unless it
causes an error in the output that is somewhat more than
4 times the inherent error of a single operation. In practice
this means transient errors in the LSBs of computations may
be missed since they are comparable in size to errors already
committed by the algorithms.

Similarly, if we re-compute the spectrum of the erroneous
FFT by taking combinations of the checksum FFTS and the
correct values, we would expect errors about sqrt(N) times
as big as we would have had if the calculation was error free.

If we are trying to determine if the operation was done
at all, as in the SETI@Qhome example, then the numerical
situation is much better. For example, a single FFT has
a numerical non-linearity of less than 1075, Therefore we
could sum almost any number of such FFTs (up to about
10*° of them) and still detect if one of them was missing
entirely.

5. EXPERIMENTAL RESULTS

The first experiment is based on Fig. 1. We take the
checksum of 15 FFTs by taking a 16th FFT. We use the
FFT from [8] with 256 complex points, using single preci-

100.1
20
0. \
70 \
&0 \

0.00 —

0.00 500 10.00 15.00 20.00 25.00 30.00

Figure 3: Detection rate vs bit number

sion floating point. In 1,000,000 trials without errors, the
cancelation is good to a level of to a level of about 39-10°
(of the input size), so we set the threshold for detecting and
error to 40 - 107°. With this threshold, no false errors were
found in 1,000,000 error free runs. Next, we introduced a
single error in a arbitrary bit of a arbitrary floating point
number after an arbitrary pass of an arbitrary FFT. 1 mil-
lion examples of such errors were tried, and measured for
the detection of errors. The results are shown in figure 3.
As expected, all MSB errors were detected and most LSB
errors were not.

Another experiments shows that we can detect one in a
million not being done at all. Here we took 1M FFTs, and
compared the sum of the FFTs with the FFT of the sum.
Omitting even one of the FFTs from the sum results in an
easily detectable error.

Further experiments show we can detect an error location
and correct the spectrum, that the overhead of these oper-
ations are as expected, and that almost all multiple errors
are detected. [Note to referees - these experiments are on-
going and much more detail can be provided if the paper is
accepted].

6. CONCLUSIONS

This paper has shown how multiple independent (but com-
posable) operations can be protected against errors with rel-
atively low overhead. This protection can be simply the de-
tection of errors, or can include correction of single errors
and detection of multiple errors. The operations can be ex-
ecuted in series by a single unit, in parallel by N units, or
in other combinations. The technique works in hardware or
software.

7. REFERENCES

)
http://ksetispy.sourceforge.net /manual/commands.html.

[2] P. Beckmann and B. Musicus. A group-theoretic
framework for fault-tolerant computation. In
Proceedings of the IEEE International Conference on
Acoustics, Speech, and Signal Processing, ICASSP-92,
volume 5, pages 557-560, Mar 1992.

[3] C. N. Hadjicostis. Coding approaches to fault tolerance

in combinational and dynamic syst ems. Kluwer
Academic Publishers, 2001.

[4] K. Huang and J. Abraham. Algorithm-based fault

tolerance for matrix operations. IEEE Trans. Comp.,

(C-33:518-528, 1984.

J. Marshall, T. Coding of real-number sequences for

error correction: A digital signal processing problem.

Selected Areas in Communications, IEEE Journal on,

2:381 —392, Mar 1984.

[6] E. Normand. Single event upset at ground level. In

IEEFE Transactions on Nuclear Science, volume 43,

pages 2742-2750, Dec. 1996.

K. Patel, B. C. Smith, and L. A. Rowe. Performance of

a software mpeg video decoder. In Proceedings of the

first ACM international conference on Multimedia,

pages 75-82. ACM Press, 1993.

[8] W. Press, B. Flannery, S. Teukolsky, and W. Vetterling.
Numerical Recipes. Cambridge University Press, 1986.

[9] R. Stockel. Feig’s scaled 2-d dct now tested with the
berkeley mpeg-player. http://rnvs.informatik.tu-
chemnitz.de/jan/MPEG/HTML/idct_discussion/Index.html,
1998.

5

7

