
Hierarchical Analysis of IC
rtwork with User-Defined

ules

Louis K. Scheffer and Ronny Soe taman
Valid Logic Systems, Inc.

n integrated circuit layout must meet two conditions
to produce working chips. First, the layout must im-

plement the intended circuit. Second, the layout must obey
design rules, the physical requirements of the fabrication
process. Design rules specify the legal sizes of features on
the chip; violate these rules and, depending on the magni-
tude of that violation, the chip will either malfunction or be
difficult to produce.

When integrated circuits were small, designers checked
by hand to ensure that circuits were correct and design rules
not violated-an irksome and error-prone process. How-
ever, as circuits grew in size and complexity, hand checking
became less practical. By this time, since IC Iayouts were
normally stored in machine-readable form, programs were
developed to check layouts against their constraints.

These design rule check (or DRC) programs test an IC
layout against a set of physical design rules and report any
violations. The designer corrects reported errors, repeating
DRC until the layout is error free. At this point, the design
can be fabricated. Extractors (component extraction pro-
grams) generate a component netlist, from an IC layout,
which is either compared against the desired netlist or made
the input to a simulator. This guarantees that the layout im-
plements the intended circuit. DRC programs and circuit
extractors are essential for the construction of VLSI chips
containing tens of thousands of devices, for which hand
checking would be completely impractical.

66 0740-7475/86/0200-0066$01 .OO O 1986 IEEE IEEE DESIGN &TEST

Non-hierararchical
analysis programs

Early DRC and extraction pro-
grams1p2 often had straightforward al-
gorithms whose time requirements
grew as O(W), where Nrepresents the
number of features on the chip. As
chips grew larger, however, execution
times of the programs also grew. Im-
proved algorithm^^-^ were developed.
In general, these had run times in the
range of O(N1.5). Since N was dou-
bling every year, a pace that continues
to the current day, these algorithms
were replaced by still more sophisti-
cated-and optimal-algorithms that
are O (M O ~ N) . ~ - ~ More recent work
has extended the O(MogN) results to
circuit extraction and decreased mem-
ory requirement, and has provided
more function.lOJ1 While chip sizes
have increased 10,000-fold, almost
every paper in the field states that
small problems run in a few min-
utes-but the largest chips take a few
hours. This has held true due to a com-
bination of faster processors, larger
main memories, and better algo-
rithms.

Basics of hierarchical
analysis

Each of the above programs started
by expanding hierarchy, {hereby creat-
ing a flat design. This eliminated all
hierarchical structure present in the
input, dramatically simplifying the
checking algorithms. However, elimi-
nating the hierarchy also introduced
problems: It was difficult to report er-
rors in terms of the cells in which they
occurred, and errors in repeated cells
were reported many times.

Since expanded designs contain
huge numbers of primitives, analysis
programs require large amounts of
main memory and disk space, and run
times are long. Small changes to in-
dividual cells may require rerunning
the whole analysis, particularly in the
case of circuit extraction, since it is dif-
ficult to determine how far the changes
propagate.

Solutions to these problems use the
hierarchical input structure to make

February 1986

analysis easier; two basic approaches
are common. The firstI2-l4 joins the
structure present in the input with
some method to take care of the cases
not readily amenable to hierarchical
analysis. The second approach im-
poses constraints upon the design so
that a hierarchical analysis is always
possible. I5-l8

Each approach contains disadvan-
tages. Programs that can accept an ar-
bitrary hierarchy produce output that
is either non-hierarchical, or that uses
a different hierarchy than specified by
the user. Schemes that restrict the
hierarchy may not be acceptable if
those restrictions force major changes
in design style. For these schemes,
using designer-preferred hierarchies is
extremely important.

Hierarchies preferred by designers
can only be determined by experiment.
Experiments described in a later sec-
tion of this paper measure a number of
full-custom chips to determine which
cell/cell and which cell/primitive in-
teractions are present. The chips we
chose to measure were designed with-
out hierarchical tools, so the only con-
straints on the hierarchy were imposed
by the designers' desire to layout,
understand, and analyze the resulting
chip. These experiments show that
strict hierarchy (hierarchy with no
overlap at all) is rarely observed; most
subcells have something overlapping
them. However, in most cases the
overlap does not change the subcell's
function. And overlap that does
change the function of the subcell is
normally restricted to specific cases,
such as ROMs and PLAs.

An ideal analysis tool would analyze
such a hierarchical design (as a human
would) expanding where necessary
while treating the design hierarchically
insofar as possible, given the analysis
to be performed. The solution pro-
posed here allows the user to specify
rules controlling hierarchical use in the
analysis. These rules may differ for
each form of analysis, and may vary
based on the cell being analyzed. This
approach allows sufficient flexibility
for analyses applying user-specified
hierarchies.

Examples of problems in
hierarchical IC analysis

The following two examples, using
the same layout and differing only in
the analysis to be performed, illustrate
the complexity of hierarchical analy-
sis. The first example requires accurate
overlap capacitances, implying that a.
cell must be reanalyzed if a primitive is
added to it. The second example re-
quires only connectivity. In this case,
the analysis must determine if the over-
lap changes the cell's function. If it
does not, then the overlap is legal;
otherwise, it is in error.

Both examples use the simple cell
represented in Figure 1 and designed to
be used in a single-layer metal environ-
ment. This cell contains metal on an
internal signal, but also offers areas
where other metal lines may cross.
Since we are performing hierarchical
analysis, we'll assume that the cell has
been analyzed in detail. We are pri-
marily concerned with the usage of the
cell, and a typical cell use is shown in
Figure 1.

In the first example, the user wants
detailed circuit data including device
size and capacitive loading informa-
tion. Among the parasitics necessary
for accurate results is capacitance
caused by overlapping layers, which
can only be obtained if the cell is
reanalyzed with the interconnections
added to it. In this case, the hierarchy
has been ignored since the unique pat-
tern of metal over the cell's top has
converted the shared cell to a unique
configuration. Note, however, that
hierarchical analysis can still save com-
putation time even if every cell is
unique. 17

In the second example, the extrac-
tion is performed to obtain a netlist for
comparison with the desired netlist.
While the exact overlap capacitances
are unimportant in this case, it is im-
portant that the interconnect metal
connect to the appropriate pins of the
device, and that any primitives over-
lapping the cell do not impair the cell's
functioning. In this example, the sub-
cell can be treated the same in every in-
stantiation-although the resulting

Figure 1. Cell and use in context.

circuit may not be the same for every
instantiation since different instantia-
tions may have different pins tied to-
gether. Hierarchical circuit extraction
can work only if the subcell schematic
can be made to represent the extracted
(flat) circuit by connections made only
to the pins. Thus, an internal con-
nection that shorts together two
nodes is allowed, whereas a modifi-
cation dividing one node into two is
forbidden.

These examples show that even with
one design, at least two different hier-
archy-handling methods are needed.
In the first instance, we are looking for
gross interference with the function of

the cell. Any such interference is an er-
ror. In the second instance, any
primitive overlapping of the cell forms
a unique occurrence requiring com-
plete reanalysis. These are not limita-
tions of the current programs; the user
requires two different results. A hu-
man faced with the same analysis
problems would be forced to treat
them in the same way.

Previous work on
hierarchical analysis

One of the first hierarchical analysis
techniques l2 involves identifying (1)

all instances of' primitives overlapping
cells and (2) each instance of unique
cell/cell interaction. Only one of each
instance is tested no matter how often
it occurs. This approach has several
advantages: It works on any hierarchy,
although it may not save time on an ill-
structured example; it reduces the
number of repeated errors in the out-
put; it reduces the computational time
by eliminating redundant checking.
Major disadvantages are that the out-
put is not hierarchically structured,
and that it does not generalize easily to
circuit extraction. We have several ex-
amples of work accepting arbitrary
hierarchical input. 13,l4

Figure 2. Cell with abstract.

68 IEEE DESIGN &TEST

Although the exact constraints dif-
fer in " hierarchical analysis with con-
straints,"15-l9 in general each cell has a
boundary that primitives may not
overlap, and cells may be of arbitrary
shape. The advantages are (1) linear
time analysis, (2) easy extension to cir-
cuit extraction, and (3) output in the
same hierarchical form as input.

The main disadvantage is the re-
quirement that no primitives overlap
cells. This complete elimination of
overlap is always possible, but experi-
mental evidence shows that designers
do not currently follow this design
style. Furthermore, recent technical
advances (such as multiple layers of in-
terconnect) make it inconvenient to
follow these restrictions. One im-
plementation of this form of hierar-
chical analysisIg avoids some of these
problems by introducing the reanalysis
of cells overlapped by primitives. This
works, and is required in some cases
(such as cross-coupling capacitance)
but is unnecessarily slow when we
desire interconnections only.

A third form of hierarchical analysis
extends the idea of a boundary to the
idea of one boundary per layer (called
a protection frame).20 This resembles
the previous approach except that the
boundary is computed on a layer-by-
layer basis, providing more flexibility
for primitives overlapping the edges of
cells. The main disadvbtage here is
the difficulty in handling strong layer-
to-layer interactions. For example, if

cross-coupling interactions must be
considered then protection frames are
insufficient. Furthermore, in a typical
NMOS process it is insufficient that
poly not violate the poly protection
frame-it must also have a certain
clearance from the diffusion protec-
tion frame.

A solution to these
problems

An abstract of a cell is any simpler
representation of the cell that can re-
place the cell in a hierarchical analysis.
The exact contents of an abstract de-
pend on the analysis being performed;
for circuit extraction, the abstract of a
cell might consist of the area occupied
by the cell and the pins of that cell.
Protection frames, DRC "donuts,"
and functional models are other ab-
stracts built for padcular analyses.

Most analysis (electrical and physi-
cal) can be performed hierarchically
with the proper form of abstract. l7 In
general, the technique involves finding
all errors that can be found without
knowing the context of the cell-and
then recording in the abstract all infor-
mation about parts of the cell that can-
not be checked until the context is
known.

Consider the following two exam-
ples of different abstracts for different
analyses. In the first example, assum-
ing that primitives do not overlap cells,
the abstract of a cell is the region

within some distance (D) of the edge,
where D is the largest design rule. For
the previous example, the abstract
might look like Figure 2. Note that
when the abstract assumptions are vio-
lated-when primitives are run over a
cell-then the cell must be reanalyzed.

Another form of abstract might be
called the "occupied area and pins"
model.21 In this case, the abstract con-
sists of a region occupied by the cell
and the pins of the cell, as shown in
Figure 3. This abstract is useful for
computing connectivity in a process
where second-layer metal often ovkr-
laps cells. Here, if a primitive overlaps
the corresponding occupied layer of
the subcell, then an error is declared
and the user must fix it. No automatic
reanalysis is performed.

In order to accommodate these two
forms of hierarchical analysis, the user
must specify how the abstract is to be
created, and must also state under
what conditions it is correct to use the
abstract in place of the full cell and
what must be done if these conditions
are not met. If the abstract is not valid,
the alternatives are to reanalyze the cell
or to report it as an error and let the
user fix it.

The abstract creation can be speci-
fied with the same commands used in
the conventional DRC. The Figure 2
abstract was created by saving all
material within some distance (D) of
the boundary. This can be expressed in
the operations AND, OR, ANDNOT,

Figure 3. Occupied area and pins abstract.

February 1986 69

EXPAND, and CONTRACT as ap-
plied to polygons. (The accompanying
summary box explains these opera-
tions.) Rules for this operation are.

abstract = primitives AND
(boundary ANDNOT
(boundary CONTRACT D)).

In addition, the user must specify
the rules determining which parts of
electrically conductive polygons within
the cell are treated as pins. This may be
done by proximity to the boundary (as
above) or by establishing a separate
layer for the purpose. For example, if
we have a define-pins layer and a
metal- 1 layer, then the pins on this
layer are defined as

pins = metal- 1 AND define-pins.

Determining whether the abstract
can be used in place of the cell may in-
volve many complex rules. The rule is
simple when overlap capacitance is im-
portant; if any primitive overlaps a
cell, then the abstract cannot be used
and the cell must be reanalyzed with
the primitive added. When checking
connectivity, however, the situation is
more complex. For example, the poly
layer in an NMOS process may over-
lap a cell provided that (1) it doesn't
get within a certain distance of any
poly in the cell; (2) it doesn't get within
any (different) distance of diffusion in
the cell; and (3) it doesn't get within
any (still different) distance of contacts
in the cell. There are similar rules for
all other layers.

We can check these rules in at least
two ways: by recording the area that is
used by the subcell, or by recording the
area that must be avoided by the par-
ent cell primitives. For example, sup-
pose that the relevant rules are 2
microns poly/poly spacing, 1 micron
poly/diffusion spacing, and 1.5 mi-
crons poly/contact spacing. We can
code these rules in two different ways:

poly > 2 microns from subcell
P O ~ Y

poly > 1 micron from subcell
diffusion

poly > 1.5 microns from subcell
contact

or, alternatively, for each cell compute
the poly- keepout layer as

poly- keepout = (poly EXPAND 2)
OR

(diffusion EXPAND 1) OR
(contact EXPAND 1.5)

poly > 0 microns from poly-
keepout.

These methods are exactly equiva-
lent only if the same metric is used for
distance measuring and the ex-
pand/contract operation. Typically,
this is not the case since different
metrics are used for efficiency; the dif-
ferences, however, are small.

In the above example, we see two
separate problems: (1) computing
the layers that represent a cell at the
next level of the hierarchy, and (2)
stating rules that use these abstract
representations.

We can express these rules in the
DRC command file as follows: For
every user-defined layer, we create two
other layers-the "occupied" area of
the subcell (computed when the subcell
was analyzed), and the "occupied"
area of the current cell (computed as
we DRC the cell). In the examples that
follow, if poly is the user-defined
layer, then poly[occupied] refers to the
subcell area occupied by poly if used as
a source of data. If used as a destina-
tion, poly refers to the occupied area
of the cell under consideration. In
these examples, we expand and then
contract layers by an amount that
merges polygons too closely aligned to
allow any routing between them,
thereby reducing the amount of data
that must be handled at the next layer
of the hierarchy:20

compute own occupied region:
poly[occupied] = (poly EXPAND 4)

CONTRACT 4
contact[occupied] = (contact

EXPAND 5) CONTRACT 5
diffusion[occupied] = (diffusion

EXPAND 5) CONTRACT 5

check spacing of poly in cell to poly
of subcells:

spacing poly poly [occupied] > 2.0
spacing poly diffusion[occupied] > 1.0
spacing poly contact[occupied] > 1.5

or, if the user wishes to express the
rules in terms of keepout regions,

dejine the region wherepoly is not
legal:

poly [keepout] =

(poly EXPAND 2.0) OR
(contact EXPAND 1.5) OR
(diffusion EXPAND 1)

Checkpoly in cell versus keepout of
subcells:

spacing poly poly[keepout] > 0.0

As described earlier, both the rules
and the abstracts differ for different
analyses. Each form of analysis has a
user-supplied name associated with it.
The DRC program keeps several dif-
ferent abstract representations for
each cell-one for each type of analy-
sis-allowing any analysis of any cell
at any time.

Error and circuit output

Error reporting is more complex for
a hierarchical analysis tool than for a
flat analysis tool; the use of the ab-
stract in place of the complete subcell
may cause complications. If the "do-
nut" abstract for a cell is used, for ex-
ample, the abstract will contain pieces
of geometry not meeting the minimum
width rules. The program must ex-
amine the location of each error to
determine whether it is real and should
be reported, or whether it is an abstrac-
tion process artifact and should be ig-
nored-not a difficult task provided the
width of the "donut" is greater than
the largest rule to be checked. If so,
each error is reported only once, no er-
rors are missed, and no false errors are
generated. l7

Subcell reanalysis also creates po-
tential confusion. If a subcell must be
reanalyzed because a primitive has
been placed over it, then any discov-
ered errors must be reported in the
parent and not the subcell. This will
generate no false errors, provided that
the subcell had no errors when ana-
lyzed by itself.

Hierarchical circuit extraction al-
ways generates hierarchical netlists.
The schematic for each cell is described
in terms of primitive components,
such as capacitors and transistors, and

IEEE DESIGN &TEST

references to subcells. If another tool
requires a fully expanded netlist, then
a separate program (a netlist compiler)
must be used to generate the fully ex-
panded list. If subcells have been rean-
alyzed because they had primitives
over them, then multiple netlists exist
for that cell, one for each different
overlapping geometry. The netlist of
the parent cell explicitly refers to these
subcell versions. Such an approach
allows most programs that read the
hierarchical netlists to ignore the dif-
ference between cells created by the
user, and cells created by reanalysis.
The alternative-storing only the dif-
ferences in the netlists for the different
versions-would save storage space,
but at the cost of added complexity.

Modifications to DRC

We added the features of the
previous section to our existing hierar-
chical DRC/EXTRACT program.
Designers then used the program to
perform analyses for many different
rule sets and processes-processes in-
cluding NMOS, CMOS, and bipolar.
The analyses employed simple DRC
rules, complex DRC rules, continuity-
only extraction, and full-parameter
extraction.

Most users run a simple hierarchical
continuity extraction, followed by net-
list comparison, until they achieve the
correct circuit topology. Then, they
run a more detailed set of rules to ob-
tain more accurate parasitics. Some de-
signers, particularly those designing
analog circuits, need full cross-cou-
pling capacitances. They must use re-
analysis to obtain these capacitances.
Other designers, primarily those work-
ing on digital circuits, can approximate
the cross-coupling capacitances with
lumped capacitances to ground-an
approach not requiring reanalysis of
cells.

Both full extraction (with internodal
capacitors) and continuity-only ex-
traction can be coded by one program
using different rules. To extract over-
lap capacitances, we must retain the
ability to reanalyze when overlapping
occurs. If reanalysis is always used,
however, many different versions of

February 1986

simple cells are created (particularly in
a process with more than one layer of
metalization). We have seen up to 40
versions of a single cell. If only conti-
nuity and lumped capacitance to
ground are required, then reanalysis is
avoided by use of keepout layers and
pins.

By using keepouts and pins, 85 to 95
percent of the cells in a typical design
can be analyzed hierarchically for both
design rule checking and circuit extrac-
tion. The major exceptions are ROMs
and PLAs where users, intending to al-
ter the subcell's function, have deliber-
ately placed primitives inside subcells.
These violations, although bad in prin-
ciple, can be easily handled in practice.
Small ROMs and PLAs can be han-
dled by flattening their hierarchy; large
ROMs and PLAs, normally machine
generated, are already handled as spe-
cial cases. Usually, we don't need cir-
cuit extraction since the same program
ge~lerating the PLA generates the sche-
matic. DRC of the final programmed
cell is not necessary except, perhaps,
for a border around the edge. The
border, another form of abstract, can
be generated by a rule file that only ap-
plies to PLAs.

ROMs and PLAs are handled auto-
matically by specifying, in the com-
mand file, that certain cells are to be
analyzed with different rules. For ex-
ample, each cell whose name begins
with "PLAY' can be flattened, while all
other cells can be treated hierarchical-
ly. Once ROMs and PLAs are treated
separately, the percentage of instances
that cannot be handled hierarchically
drops to roughly three percent (for a
design that was not built with hierar-
chical analysis tools in mind). With
new designs and cooperative design-
ers, the percentage of cells that cannot
be hierarchically analyzed drops to
zero.

Measurements of
custom chips

Several questions about hierarchical
analysis techniques can only be an-
swered by experiment. The most in-
teresting of these questions is: What
percentage of analyses performed on

real designs can be performed hierar-
chically? This is difficult to quantify
for several reasons. First, if the analy-
sis method needs constraints, then the
percentage will depend on the willing-
ness of designers to follow those con-
straints. Furthermore, the analyses
requested depend heavily upon what
other tools are available. If the analog
simulation programs and network
comparison programs only work on
flat i n p ~ t , for example, then the de-
signer has no use for hierarchical cir-
cuit extraction.

Nonetheless, the hierarchichal re-
strictions that designers will accept can
be estimated by examining chips de-
signed using only flat analysis tools.
Designers using these tools employ
hierarchy only as an aid to building
and understanding these circuits-not
a true test of designer wants since, by
analogy with programming, when
hierarchical tools are available design-
ers will use them. However, the struc-
ture designers impose provides a lower
bound to the structure they will accept.

Table 1 lists statistics from two large
custom chips. One is Berkeley's RISC-
I1 chip; the other is the 9852 CRT con-
troller from Advanced Micro Devices.
Both were designed with flat analysis
tools and hierarchical editors. Both are
built in an NMOS process. Table 1
reports cell uses two ways: First, an ar-
ray of cells is counted as one reference;
second, an array of Ncells is treated as
N separate subcells.

The incentive for hierarchical DRC
is clear from Table 1; if we analyze
each cell once in the RISC-I1 design,
we analyze roughly 24,000 trapezoids.
If we analyze the flat design, we need
to analyze roughly 461,000 trapezoids.
Moreover, DRC algorithms are worse
than linear so the difference is further
magnified. On the other hand, when a
cell is analyzed hierarchically informa-
tion from subcells must be included
and the abstract must be generated.
This decreases the advantzge of the
hierarchical approach, but reductions
of between 400 to 1000 percent in CPU
time remain typical.

The performance of the hierarchical
DRC/EXTRACT depends drarnati-
cally on the required reanalysis. If no

Legal Illegal Illegal
spacing =3 spacing =2 spacing =2.83

tt

(a) Examples of spacing test 1 micron

Legal
width =3

- I

+ C

Illegal
width =2

--+ C

+t

1 micron
@) Example of width test

Legal Illegal

(c) Examples of enclosure test

Figures la-c. Basic measurements

performed by DRC.

Basic Geometrical Operations for Design Rule Checking

Design rule checking is built around two basic operations: measuring
geometry, and creating new geometry as a function of existing shapes.
Operations define which regions to test, and measurements find the errors
which are reported to the user. Measurements are performed between all
edges of a given type. The basic tests are illustrated in Figures l ac .

Geometrical operations isolate features to be tested. A nonimplanted
transistor, for example, occurs only where polysilicon and diffusion
coincide and the implant mask is not present. In this case, the logical
operations can generate geometry corresponding to these transistors
only. For operations on geometry, each region on an IC mask can be
regarded as a set of points in the Cartesian plane, allowing operations of
AND, OR, ANDNOT, and XOR to be performed pointwise. Figure 2 shows
the results of these operations on two rectangles.

The operations EXPAND and CONTRACT work on a single layer.
EXPAND makes all polygons on a layer bigger without affecting their
position. CONTRACT makes them smaller. EXPAND is performed by
including all points within a given distance into the existing set, possibly
causing adjacent figures to merge and holes inside figures to disappear.
CONTRACT is performed by deleting from a figure all points within a
specified distance of any point not in the figure. CONTRACT can cause
single figures to break into multiple figures, and can cause figures to
disappear entirely.

The exact results of EXPAND and CONTRACT depend on the metric
used. The Euclidean metric is perhaps the most natural, but a square
corner will turn into an arc if expanded using the Euclidean metric. Arcs are
more difficult both to deal with computationally and to reproduce with
mask-making machines, most of which are based on rectangles or
trapezoids; approximating circular arcs with these figures increases the
cost manyfold.

By using a different metric, square corners will remain square-useful
for making masks, but resulting in corners being overexpanded. A
compromise, such as the octagonal metric, reduces the maximum error to
eight percent while adding only one side to an original square. Figures 3a-b
show the results of EXPAND and CONTRACT on severa! images, using
different metrics.

aAND b aORb aANDNOTb aXORb

Figure 2. Logical operations on two rectangles.

reanalysis i s required, performing a
15-rule circuit extraction on the RISC-
I1 chip takes about 6000 CPU seconds.
With a set o f rules that forces reanaly-
sis o f every instance o f every cell, the
same analysis takes roughly 40,000
CPU seconds (for an 8 MHz Motorola
68000).

Table 2 enumerates cell use in the
hierarchy. Each cell in the design i s
looked at once (no matter how many

times i t i s used) and the subcegs used
are counted. This corresponds to the
number o f subcell references a hierar-
chical analysis program must analyze.
For the first measurement ("with over-
lap") we build an abstract for each cell
by expanding and then contracting
each layer, and by removing holes. I f
any parent cell geometry overlaps this
region, the cell i s counted in t h i s
group.

Next, we look for overlaps changing
the subcell's circuit. Since all the chips
considered here are poly-gate MOS,
we can do th i s by searching for poly
overlapping the diffusion o f subcells
or vice versa.

Finally, we assume that ROMs and
PLAs will be analyzed with different
rules as discussed in the previous sec-
tion. Therefore, we recalculate the per-

IEEE DESIGN &TEST

Expand -2 Expand - 1

r-
L L

Original figure Expand 1 Expand 2

Original figure Expand 1 Expand 2

Figure 3a-b. Expansion and contraction with different metrics.

centages excluding these cells-labelled
' 'non-ROM circuit mods," these cells
cannot be analyzed hierarchically for
circuit extraction.

The results clearly show that while
designers often put primitives over
cells, they generally change the circuits
of subcells only in certain well-defined
cases. Except for ROMs and PLAs,
just a small percentage of cell refer-

February 1986

ences change the subcell circuitry. Ex-
amination of these remaining cases
shows that, if necessary, they could be
done as easily without circuit modifi-
cation. The tools used in developing
these examples provided no such in-
centive. It's very encouraging that
only a small number of cells violate
hierarchical constraints, even in the
absence of explicit rules forbidding
these violations.

Table 1. Custom chip statistics.

chip RISC-II 8052

Each cell once:
number of cells 346 487
references (no arrays) 1360 3704
references (with arrays) 2966 1091 5
trapezoids in all cells 23565 17371 7

Full hierarchy:
references (expanded) 1069 4330
references (with arrays) 11367 20693
total trapezoids 460537 101 5479

Table 2. Modification of subcells.

RISC-II 8052

references 1360 3704
with overlap 87.9% 94.5%
with circuit mods 11.6% 17.8%
ROMs, PLAs 10.0% 13.4%
non-ROM circuit mods 1.54% 4.32%

ur experiments show hierar-
chical analysis of IC layouts to

be practical-providing the perfor-
mance benefits of hierarchical analy-
sis, improving error reporting, and
allowing the use of circuit tools need-
ing hierarchical input-without re-
quiring major changes in layout de-
sign. However, different approaches
to hierarchical analysis are required
depending on analyses requested by
designers. Some requests demand sub-
cell reanalysis for sufficient accuracy;
for other requests, this reanalysis is un-
necessary and time-consuming.

With the addition of four new fea-
tures, a hierarchical DRC and circuit
extraction program can handle all
commonly required forms of analysis.
These features are: user-defined ab-
stract generation, userdefined rules
stating when the abstract is valid, user
specification of what to do with an in-
valid abstract in a given context, and
user specification of analysis form de-
pending on the cell type.

There are several advantages to this
program. AU common layout analysis
operations can be performed with
user-specified hierarchy. The user, not

the program, makes tradeoffs between
the performance advantages of pre-
serving the hierarchy and additional
operations (such as detection of over-
lap capacitance) possible with explicit
subcell reanalysis. In particular, this
program handles multiple intercon-
nect layers and cells with internal ter-
minals; these are analyzed using the
user-specified hierarchy and without
subcell reanalysis. The same program,
with different rules, can also handle
problems (such as the calculation of
overlap capacitance) requiring subcell
reanalysis.

Hierarchical analysis tools resemble
structured programming tools. AU are
designed with consideration given to
existing applications, but the real test
comes as users grow familiar with the
tools and design new applications. In
each case, there are many possible
tradeoffs between user constraints and
ease of analysis. In each case, com-
plexity limits the size of practical
design. As has proven true with pro-
gramming tools, human understand-
ing of both the layouts and the results
of the analysis tools probably deter-
mines the proper tradeoffs for IC
layouts. Thus, the designs and tools
most easily understood by human
designers present a promising topic for
future research. i%

Acknowledgments
We would like to thank Advanced Micro

Devices for providing examples of commer-
cial chips. Commentary by IEEE referees
was also helpful, and is appreciated.

References
1. M. Yarnin, "XYTOLR-A Com-

puter Program for Integrated Circuit
Mask Design Checkout," Bell
System Tech. J., Vol. 51, No. 7, Sept.
1972, pp. 1581-1593.

2. B. Preas, B. Lindsay,and C. Gwyn,
"Automatic Circuit Analysis Based
on Mask Information," Proc. 13th
Design Automation Conf., San Fran-
cisco, Calif., June 1976, pp. 309-317.

3. H.S. Baird, "Fast Algorithms for
LSI Artwork Analysis," Proc. 14th
Design Automation Conf., New
Orleans, La., June 1977, pp. 303-3 11.

4. D. Alexander, "A Technology In-
dependent Design Rule Checker,"
Proc. 3rd USA-Japan Computer

Conf., San Francisco, Calif., Oct.
1978, pp. 412-416.

5. K. Yoshida et al., "A Layout System
for Large Scale Integrated Circuits,"
Proc. 14th Design Automation
Conf., New Orleans, La., June 1977,
pp. 322-330.

6. P. Wilcox, H. Rombeek, and D.M.
Caughey, "Design Verification
Based on One-Dimensional Scans,"
Proc. 15th Design Automation
Conf., Las Vegas, Nev., June 1978,
pp. 285-289.

7. U. Lauther, "An O(N log N)
Algorithm for Boolean Mask Opera-
tions," Proc. 18th Annual Design
Automation Conf. , Nashville,
Tenn., June 1981, pp. 555-562.

8. J. Bentley and D. Wood, "An Op-
timal Worst-case Algorithm for
Reporting Intersections of Rect-
angles," IEEE Trans. Computers,
VO~. C-29, July 1980, pp. 571-577.

9. J. Bentley and T. Otmann, "The
Complexity of Manipulating Hierar-
chically Defined Sets of Rectangles,"
Tech. Report, Carnegie-Mellon Uni-
versity, 1981.

10. T. Szymanski and C. Van Wyk,
"Space-Efficient Algorithms for
VLSI Artwork Analysis," Proc. 20th
Design Automation Conf., Miami,
Fla., June 1983, pp. 734-739.

11. P. Chapman and K. Clark, "The
Scan-Line Approach to Design Rules
Checking: Computational Experi-
ences," Proc. 21st Design Automa-
tion Conf.: -Albuquerque, N.M.,
June 1984, pp. 235-241.

12. T. Whitney, "Description of the
Hierarchical Design Rule Filter,"
SSP file #4027, Silicon Structures
Project, California Inst. Technology,
Pasadena, Calif., Oct. 1980.

13. M. Newell and D. Fitzpatrick, "Ex-
ploiting Structure in Integrated Circuit
Design Analysis," Proc. Conf. Ad-
vanced Research VLSI, MIT, Cam-
bridge, Mass., 1982, pp. 84-92.

14. S. Johnson, "Hierarchical Design
Verification Based on Rectangles,"
Proc. Conf. Advanced Research
VLSI, MIT, Cambridge, Mass., 1982,
pp. 97-100.

15. J. Rowson, "Understanding Hierar-
chical Design," PhD dissertation,
California Inst. Technology, 1980.

16. L. Scheffer, "A Methodology for Im-
proved Verification of VLSI Designs
without Loss of Area," CaItech Con3
KSI, Pasadena, Calif., 1981.

17. L. Scheffer, "The Use of Strict
Hierarchy for Verification of In-

tegrated Circuits," PhD dissertation,
Stanford University, 1984. (Available
as a tech. report from: Integrated Cir-
cuits Laboratory, Stanford Universi-
ty, Stanford, CA 94305.)

18. S.N. Stevens and S.P. McCabe,
"IDS-A System for Fast, Hierarchi-
cal Design of Handcrafteci VLSI Cir-
cuits," IEEE I984 Custom Integrated
Circuits ConJ, Rochester, N.Y., May
1984, pp. 107-1 11.

19. "DRC/EXTRACT Manual," Valid
Logic Systems, Inc., 2820 Orchard
Pkwy, San Jose, Calif., Oct. 1983.

20. K.H. Keller, A.R. Newton, and S.
Ellis, "A Symbolic Design System for
Integrated Circuits," Proc. 19th
Design Automation Con f., Las
Vegas, Nev., June 1982, pp. 460- 466.

21. "Electronic Design Interchange For-
mat Version 1 0 0," The EDIF Users'
Group, Design Automation Dept.,
Texas Instruments, P.O. Box 225474,
MS3668, Dallas, Tex. 75265.

Louis K. Scheffer is an engineer at Valid
Logic Systems, working on hardware and
software to support VLSI layout. Before
joining Valid, he worked for Hewlett-
Packard as an IC designer and layout tool
developer. He received both his MS from
the California Institute of Technology and
his PhD from Stanford in electrical engi-
neering.

Ronny Soetarman is a software engineer at
Valid Logic Systems, working on the
DRC/extract program. He received his
BS in mechanical engineering from the
University of California at Santa Barbara,
and his two MS degrees in mechanical en-
gineering and computer engineering from
Stanford University.

The authors' address is Valid Logic
Systems, Inc., 2820 Orchard Parkway,
San Jose, CA 95134.

IEEE DESIGN &TEST

