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ABSTRACT
In the famous Dumas novel The Count of Monte Cristo[4],
the (future) count is falsely accused of treason. Only after
a long and difficult fight does he achieve respectability and
reveal his adversaries as imposters. Similarly, Monte Carlo
techniques are falsely accused of several crimes, including
wasting computational resources, missing errors, and inad-
equate feedback. However, a more detailed analysis shows
that the real problem involves many more variables than
commonly thought, that proposed solutions do poorly in
these cases, and that Monte Carlo is not as expensive as has
been thought. Furthermore the drawbacks are either easy to
overcome or shared by the other possible solutions. In short,
the stage is set for Monte Carlo to return to respectability,
if not triumph.
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1. INTRODUCTION
Monte Carlo simulation is widely viewed as accurate and

theoretically sound, but is accused of several problems:

• Monte Carlo is too CPU intensive for practical use.

• Monte Carlo is run on paths, but there are too many
paths for full coverage. Therefore there is chance that
some relevent net will be omitted.

• Monte Carlo, even if correct, provides no useful feed-
back to improve the circuit.
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There is an element of truth to each of these objections,
and therefore considerable research has gone into alternative
methods[7, 9, 10, 12, 14].

Why is Monte Carlo thought to be slower than the alter-
natives, perhaps so slow as to be impractical? Most of the
other proposed approaches are based on a modified static
timing analysis (STA), propagating some information more
complex than simple arrival times (PDFs, CDFs, or sen-
sitivities). Static timing is one of the most efficient CAD
algorithms, and one of the few that are O(N), since it visits
each node and each cell exactly once. Monte Carlo tech-
niques, by their very nature, visit each node hundreds, if
not thousands, of times. Furthermore, many researchers
have at least experimented with Monte Carlo (typically to
get “golden” results for comparison with their trickier meth-
ods) and found that a straightforward implementations of
Monte Carlo is indeed very slow.

However, the efficiency disadvantage of Monte Carlo may
be overstated, since the real problems of chip analysis occur
in a space of (very) many dimensions. This gives consid-
erable, and perhaps fatal, problems to the proposed new
techniques but only minor complications to Monte Carlo
methods. Furthermore, Monte Carlo techniques can easily
be improved to reduce their run times, and are very easy
to parallelize. Therefore they may be in practice among the
fastest of the practical techniques.

Another knock about Monte Carlo is that it cannot con-
sider all paths, unlike techniques that operate on the timing
graph in an STA like fashion. This can be solved by us-
ing more Monte Carlo rather than less, using Monte Carlo
analysis to help pick the paths to be simulated.

A final complaint against Monte Carlo is that without
an explicit propagation through the timing graph, earlier
design stages will not have any handle on optimization. We
note that this is exactly the same problem faced by the lack
of knowledge of detailed routing in synthesis, and propose
similar solutions. Furthermore, with parallel processing, a
Monte Carlo analysis suitable for these applications (faster
but lower quality) can indeed be done incrementally.

2. PROCESS VARIATION HAS MANY DI-
MENSIONS

Process variation occurs in a highly multi-dimensional
space[15]. Even in a simple case, where only interconnect
is considered and all intra-chip variation is ignored, if there
are N routing layers, then there are at least 4N dimen-
sions. This is because for each routing layer, there are
four main variables - metal thickness, metal width, inter-



layer dielectric thickness, and via resistance - all of which
may vary independently. (Note that the metal width and
metal spacing do not vary independently - their sum, the
pitch, is extremely well controlled, so they are precisely anti-
correlated.) Cell delays add at least three more dimensions,
historically P (process), V (voltage), and T (temperature).
P, intended to represent the cell speed, is a composite of
more fundamental variations such as threshold voltage and
oxide thickness. V and T are operating conditions and not
manufacturing variances, but share many of the same char-
acteristics and can benefit from the same analyses.

So even in this simplified case where all intra-chip varia-
tion is ignored, and cell speed has an (over) simplified model,
there are still tens of variables, and this number cannot eas-
ily be reduced - and handling this case is one of the main
requirements of statistical analysis. For example, a recent
customer[1] built a chip that failed whenever the metal-4
vias were unusually low resistance and the rest of the met-
als were nominal1 Note that this kind of problem is almost
always uncaught by corner analysis, since it’s impractical
to use enough corners. Even if just slow/fast for each layer
is considered, 10 layers lead to 210 = 1024 runs to account
for all interconnect corners. If all four main variables for
each layer are considered (which would have been required
in the case above, for example), then then 10 layers will
take 240 ≈ 1012 corners. Even this would not catch all er-
rors since there is no guarantee that the worst case happens
at any of these corners[14].

Next, one of the main motivations for statistical timing is
to handle on-chip variations. This adds many more dimen-
sions, as the next section shows.

3. REALISTIC TREATMENT OF ON-CHIP
VARIATION

In addition to ‘global’ variations, where metal 1 (for ex-
ample) is thick or thin across the whole chip, it is also true
that metal 1 thickness varies from place to place on a single
chip. Some of this is deterministic, determined by nearby
features and environment. This should be compensated for
before statistical analysis, a point whose importance is dif-
ficult to overstate (though Nassif[13] is trying).

The simplest form of on-chip variation assumes a linear
trend across the chip. This creates 2 more variables for each
existing variation (these define the plane of cross chip vari-
ation). Now we have at the very least 120 variables for a
10 layer process. More realistic models of on-chip variation
introduce even more dimensions. Any statistical technique
must look at all the paths that are critical, or may become
critical, under any likely set of process conditions. Often
this is several thousand paths, as shown in [8]. Figure 1,
from this presentation, show how the yield curve varies as
more paths are included. An accurate result (at least on
this one design) requires considering thousands of paths.
Each of these paths contains several gates, and an equal
number of nets. To correspond with the physical situation,
each gate, and each net, should be assigned several random
variables, since each gate or interconnect piece depends on
several variables, and even gates (or nets) very close to each

1One branch of the clock tree had more vias than the other.
Though they had comparable delays under nominal condi-
tions, if the M4 vias were less resistive then usual, the one
branch was faster then the other, and hold errors resulted.

Figure 1: Yield curve vs. number of paths consid-
ered

Figure 2: Structure of the correlation matrix

other are not completely correlated. Thus the true (physics
based) treatment involves tens of thousands, if not hundreds
of thousands, of variables.

3.1 Correlation methods
Statistically, there is no conceptual problem to using scril-

lions of variables. We simply define a random variable (say
V t) for each transistor in each gate in all the possibly crit-
ical paths. We then define a correlation matrix that shows
how all these V ts are correlated. Note that this matrix will
be completely dense since all the V ts on a chip are corre-
lated, and none of the correlations will be very close to 1
since even adjacent devices have significant random varia-
tions. This puts us in ugly mathematical territory where
no correlations can be dropped since they are all significant,
but no variables can be eliminated since none are correlated
completely.

A thought experiment shows this correlation problem is
real. If the variables were truly correlated, then only one
path (the longest) would need to be considered. No matter
what the variation it would always be the longest. On the
other hand, if the paths were completely uncorrelated, then



Figure 3: Global wafer variation

Figure 4: Intra-chip

only 40 or so paths would need to be considered. This is
because, in this case, to make the Nth path the worst, if
needs to be worse than path 1 (probability ¡ 1/2) AND worse
than path 2 (prob ¡ 1/2) AND worse than path 3 and so
on. By the time you get to the 40th path there is only
a chance in a trillion 1012 of the path becoming critical.
In real chips, though, the fact that including more paths
changes the results, up through at least several thousand
paths, shows the correlation problem is real and cannot be
ignored.

Of course there is not just one process variable (V t above)
but in practice many variables for each interconnect layer
and each cell parameter. For example, suppose we have
5000 paths, each with 4 gates and 4 nets (this is a bare
minimum if we want to include the clocks from the point of
divergence as well). Say we have 4 interconnect variables for
each layer and 4 cell variables. This leads to the structure
shown in figure 2. Overall, the structure is a banded 44 by
44 matrix. Each entry in this matrix is all zeros, or a 20K
by 20K dense matrix.

3.2 Additive methods
Perhaps instead of utilizing the correlation structure of

Figure 5: Performance of different methods as di-
mensions increase

the problem, we can attempt to construct the distribution
in such a way that the desired correlations result. We might
express the V t of a given transistor as a sum of a global V t
for the chip, a correlated component, and a purely random
component. For the correlated component, we will need to
pick basis functions and sum them up. These will have to
be present at a wide range of scales, since some affects are
gradients across the entire wafer( such as illustrated in figure
3), where others are much more localized as shown in figure
4 taken from[15].

How many basis functions will need to be added to re-
create a realistic on-chip variation? Clearly reproducing a
cross-chip variation such as shown in figure 4 will require a
considerable number. Agarwal et al.[2] tried this approach
and used a 6 level hierarchy with each level decomposing a
square into 4 smaller squares. Therefore their basis functions
were 1 full chip square, 4 smaller squares, 16 still smaller
squares, and so on down to 1024 leaf squares as the smallest
representable element, for a total of 1365 variables. An-
other way of estimating the variable count is to note that
an industrial process manual[6] states different numbers for
correlation if the transistors are no more than 200 microns
apart. A chip 20 mm on a side contains 10,000 regions that
are 200 by 200 microns, and hence would require about that
many more variables.

4. PERFORMANCE OF PDF METHODS
Many of the proposed methods for dealing with statisti-

cal variation[7, 9, 10, 12, 14] do not deal gracefully with
large number of parameters, or require the parameters to
be uncorrelated, or of specific distributions, or both. Figure
5, for example, from the paper[8], show how the run times
of different methods depends on the number of variables.
Clearly the parallelepided method, for example, does not
cope well with large numbers of variables. Note, in partic-
ular, that the Monte Carlo methods are not the slowest of
those tried - for any realistic number of parameters, they are
the fastest! One of the few methods in the literature that
does cope with spatial variation, that of Agarwal et al.[2],
compares their proposed algorithm to Monte Carlo in terms
of accuracy, but not in terms of run time. This data would
be very interesting.



Another way of dealing with correlated variables is to
transform them to uncorrelated variables by a change in ba-
sis[3]. This is the idea bahind principal component analysis.
However such methods are based on a SVD analysis, which
takes O(N3) time for N components. This is impractical
with tens of thousands of variables.

5. PERFORMANCE OF MONTE CARLO
While Monte Carlo analysis is regarded as theoretically

sound, there are many worries about its performance. These
worries come largely from the large number of trials re-
quired. As a stochastic technique, the error scales as 1/

√
(M),

where M is the number of trials. Hence to get 1% accuracy
about 10,000 trials will be required, and this number will be
assumed in the estimates below.

The simplest way to do Monte Carlo analysis would be
to run the whole extract (including characterization), delay
calculation, and timing flow many times. This would take
about 10,000 times as long as the current signoff calcula-
tions, which would indeed be impractically slow. However,
there are many ways to improve this time.

Extraction can include explicit variation of the extracted
values with process variations[14]. Then extraction needs
only be done once. It will be slower, and take more stor-
age to hold the results, but by a small factor rather than a
factor of 10,000. Likewise, delay calculation can incorporate
this information, and in turn produce delays that are an ex-
plicit function of process variables[11]. Once again this only
needs to be done once, and is only somewhat slower than
conventional delay calculation.

Next, not all paths need to be simulated with Monte
Carlo. Only those that are critical, or have a non-negligable
change of becoming critical, need to be considered. Al-
though this number is design dependent, it appears from
looking at Figure 1 (and other similar designs) that the
number of paths that need to be considered is about 1%
of the total number of cells. These paths can be selected
with a conventional static timing tool, or such a tool with
relatively minor extensions (this is covered in more detail in
the next section). Although selection of the paths that are,
or might be, critical, is an interesting problem in its own
right, this must be solved for many other techniques as well.
It works just as well with Monte Carlo as other techniques.
If 1% of the paths need be considered, but each evaluated
10,000 times, then we might expect the Monte Carlo process
to take 100 times as long as conventional static timing. This
is much better but still not good.

However, 10,000 evaluations of the same path can be much
quicker than the evaluation of 10,000 different paths. For ex-
ample, relatively few runs of a path can be used to generate
a response surface model, and then further analysis can use
this model, which is much faster. For example, if a linear
response surface is adequate (and there is some evidence
that this is the case for most parameters[14]), then if a path
depends on 100 parameters, then 100 runs is enough to gen-
erate the response surface. Then the 10,000 Monte Carlo
runs reduce to 10,000 vector dot products, taking a negliga-
ble time in comparison. 100 runs each on 1% of the paths
will merely double the required CPU time, which is rela-
tively acceptable. Higher order response surfaces,if needed,
are still more efficient than independent evaluations.

Next, even the 100 or so runs required to establish the
response surface are very similar. Incremental techniques

Figure 6: Example where worst nominal paths are
not worst overall

can be used to speed up these evaluations with no loss of
accuracy, since only a few parameters vary.

Finally, Monte Carlo methods parallelize well, even upon
the cheapest possible multi-processing setups (perhaps large
clusters of Linux workstations, connected only by a net-
work.)

At a very large number of dimensions, however, some sur-
prises can emerge. Take, for example, the problem of gen-
erating the cases to be simulated. In the correlation model,
from section 3.1, this is surprisingly tricky. A quick look at
the literature shows that the way to generate a sample from
a correlated data set of size N is to generate N independent
random variables, then ’mix’ them with a N by N matrix
to generate the N correlated random variables. The NxN
matrix is the Cholesky decomposition (basically the square
root) of the correlation matrix. This decomposition always
exists, since a correlation matrix must be positive definite,
so there is no problem in theory. In practice, though, com-
puting this decomposition for a dense matrix requires O(N3)
time and O(N2) space. For N = 100 or so this is reason-
able, but it N > 100, 000 or so it becomes prohibitive. One
possible alternative would be to just include the correlations
to the nearest few hundred items (which makes the matrix
sparse). Alternatively, the additive method of generating
correlations[2] does not suffer from this problem, and can
parallelize well.

6. MONTE CARLO REQUIRES PATH PRUN-
ING

Another potential problem with Monte Carlo is that it
works (at least when implemented in the obvious way) on
paths, and there are too many paths to enumerate. There-
fore normally the few apparently worst paths are selected
and analyzed. But what if some other path (with a smaller
nominal delay) could become worse under some condition?
How can we guard against this?

First, let’s see how this could happen. Figure 6 shows a
thought experiment where the paths that determine yield
never show up in any of the worst N paths under nominal
conditions. Imagine a huge number N of paths with identi-
cal nominal delay, with a very small spread. Next, imagine
M paths with delay very slightly less, but a wide spread,



with these M paths being completely independent. Each of
these M paths could have up to a 1/2 chance of being more
critical than any of the N nominally worse paths. By in-
creasing M , we can ensure, to any desired probability, that
the true limiting path is not one of the N nominally worst.

To avoid this problem, one approach might be to do the
static analysis at several corners, then take the union of all
paths found. A typical set of corners might be min and max
interconnect delay (R times C), min and max cell delay (to-
tal C), and nominal. This would certainly help in practice,
but is not guaranteed since the spread in figure 6 might be
due to differences between layers, which does not appear in
any of the corners above.

A better solution is to use Monte Carlo to pick the paths.
This means picking some sets of parameters, finding the
worst paths in each case, and taking the union of these paths.
It’s easy to see why this works - if you have any effect, no
matter what the nominal delay, that limits the speed in
(say) 10% of the cases, then it should also show up in 10%
of the Monte Carlo runs. Using the approximation that
(1 − a/N)N ≈ e−a, we can see (for example) that if we
use 100 Monte Carlo runs to select the paths, we have a
probability of e−1 of missing a path that shows up in 1% of
the cases, an e−2 probability of missing a path that shows
up 2% of the time, and so on. There is basically no chance
(e−10) of missing a path that shows up 10% of the time.

7. FEEDBACK TO EARLIER STEPS
A very legitimate question with Monte Carlo analysis is

how to generate feedback to earlier tools from the result.
Part of the reason is that a pure Monte Carlo might not
tell you why a path fails. However, with only a little more
work, the delays computed under the various Monte Carlo
cases can be used to compute the sensitivities and hence tell
under which conditions the path fails. This is not difficult
if designed into the Monte Carlo analysis.

A more serious objection is that you can make an incre-
mental version of the timing graph methods, but an incre-
mental version of Monte Carlo is difficult. Therefore al-
though Monte Carlo might work for signoff, the effect of
incremental changes will be hard to evaluate. Although this
is a real concern, there are two answers to this objection.
First, it may be not be a big disadvantage in practice, and
second it may be possible to do Monte Carlo (at least a
limited version) through the use of parallel processing, and
do so almost as quickly (and incrementally) as conventional
STA.

Accurate incremental analysis may not be very useful in
practice. When a path is modified in synthesis or placement,
in general the new routing is not known precisely. Therefore
any net properties are only rough estimates. It’s true that an
STA like method could propagate these accurately, but it’s
not clear yet what is gained by an accurate propagation of
crude estimates. It may well be that a crude-but-fast prop-
agator is a better choice, and this might work equally well
with an STA method or a Monte Carlo method. This area
is ripe for lots of research into the best way to fix problems
found by a statistical tool.

Second, it may well be possible to make an incremen-
tal Monte Carlo analysis. This might involve doing N con-
ventional incremental timing analysis runs in parallel, each
with slightly different data. Then the launching process can
collect the changed arrival times (or slacks, or any other

product of timing analysis) and estimate roughly the distri-
butions (and correlations if need be) of any of the results.
This will not be very high quality, since the number of Monte
Carlo samples is limited to the number of parallel proces-
sors available, but it should be more than enough quality to
evaluate the result of design changes.

Paths with high likelihoods of becoming too short pose no
problem, since these MUST be fixed, and the fix is in general
straightforward. They must be fixed since this error does not
go away if the chip is run at reduced speed. Fixing these is
relatively straightforward, since the fixes can be made with
relatively large margins so extremely detailed analysis is not
required. The fixes will be the same whether the problem
is found by Monte Carlo or conventiional STA. Suppose, for
example, that a hold error results whenever metal 3 is thin
but metal 4 is thick. The solutions will resemble those for a
hold time violation found for any other reason - balance the
clock paths better, delay the clock to the launching flip-flop,
or insert more delay in the Q− > D path.

Predictions of long paths are harder to feed back since
they are probabalistic. However, these can be handled the
same way as routing effects. Synthesis does not understand
detailed routing, either, but feedback from post detailed
routing has been fed back for years. Typically, existing paths
get the back annotated delays (and now probabilities will be
added), and these are assumed to be correct as long as the
path is not modified. As the logic structure is changed, new
paths are created, which are assigned delays based upon es-
timates. These will also need to be assigned probabilities.
Note that even if the probabalistic timing is computed di-
rectly upon the synthesis timing graph, this problem still
exists (due to routing uncertainty) unless the synthesis tool
also does signoff quality routing and extraction as it runs,
which seems very unlikely. An open and very interesting
question is how the uncertainty induced by statistical timing
compares with other known sources, such as the uncertainty
induced by the lack of detailed routing during synthesis.

In either event, whether computed upon the timing graph
directly, or fed back from post processing analysis, synthesis
must no longer have the view that only the most critical path
counts. Instead, each path will have some chance of being
critical, and there will be some benefit to improving paths
that are slightly faster than the worst. Perhaps the biggest
effect will be on optimizations such as leakage reduction,
where slower cells are substituted until the delay becomes
just less than that of the critical path. Instead, this process
should probably stop when the chance that the path become
critical rises above a certain percentage.

8. OTHER ADVANTAGES OF MONTE CARLO
Monte Carlo also has a number of practical advantages.

It is insensitive to the distributions of the variations. It can
be run at either the gate level or at SPICE level (which
avoids the need for cell characterization). The effects of
crosstalk are easy to add in (since a crosstalk analysis tool
can generate paths with the aggressors included). IR drop
can be included if the cells are characterized for it, or if the
analysis is done at the SPICE level.

9. CONCLUSIONS
Monte Carlo analysis has many advantages. It is clearly

technically correct, and can easily cope with complications



such as correlated variables, high dimensionality, and non-
standard distributions. However, there are serious potential
drawbacks: it is potentially slow, path selection could be in-
correct, and feedback to other tools may be difficult because
it does not work directly on the timing graph. However, in
realistic cases with high numbers of dimensions, the com-
peting methods are also slow, perhaps even more so than
Monte Carlo, while Monte Carlo offers many possibilities
for optimization and parallel processing. Path selection does
indeed require care, but by using Monte Carlo this can be
done to reasonable standards. Finally, feedback to tools ear-
lier in the design chain looks straightfoward, similar to the
feedback from other signoff tools that is performed today.
Therefore, in the words of Faulkner[5], Monte Carlo will not
merely endure, it will prevail.
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