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Abstract

The math behind creating multiple beams from a phased array beacon. We
compute the tradeoff between number of transmitters, number of beams, and
beam quality. We find the expected amplitude, power and phase noise. We
determine the degradation if the transmitters are all equal and fixed power.

1 Intro

Assume we have N transmitters, and want to generate M beams. Each trans-
mitter is 1 watt (either absolute, or on the average, depending on the model).
We assume the beams are randomly located on the sky. We assign the phases
and amplitudes of each transitter as follows. For each target, compute the de-
sired phase at the transmitter. Then for each transmitter, add (as vectors) the
desired phases for each target, with amplitude 1/

√
M . In the variable ampli-

tude model this gives us both our amplitude and our phase. In the constant
power model we then keep the phase and set the amplitude to 1. In the variable
amplitude case the power will average 1, since the mean of the square of M
random vectors of length 1/

√
M is

√
M/
√
M = 1.

2 Math

We use a result first derived by Rayleigh[1]. If we start at the origin, and make n
steps of unit length in random directions, then the odds of finding the endpoint
between r and r + dr from the origin is:

2
n
re−r

2/ndr

. The mean squared displacement is n, leading to the well known result that
the average displacement grows like

√
n. The X or Y component, considered

alone, has mean 0 and variance n/2.
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3 Calculations

We look at the result as seen by one receiver. To do this, we add add transmitter
voltages with the phase shift appropriate for the receiver direction. The 1/

√
M

contribution computed from that reciever will add up in phase. The other
(M − 1)N contributions will appear as a sum of random vectors, and will have

magnitude roughly
√

(M−1)N
M . Thus the final voltage in the phase plane as seen

by that receiver looks like this:

0,0
N√
M

√
(M−1)N

M�
-���"!
# 

Although drawn as a circle, since it’s statistical the error is really a cloud.
All we know is that the voltage vector ends somewhere in that area. Therefore
the main characteristics of a beam are as follows:

The expected amplitude is

Amplitude(M,N) = A0
N√
M

where A0 is the amplitude induced by a single transmitter. Equivalently the
EIRP per beam is

EIRP(M,N) = P0
N2

M
where P0 is the EIRP of a single transmitter. To find the expected variance in
voltage, we want only the X component of the cloud. This will be 1

M
(M−1)N

2 , and
the standard deviation will be the square root of this. The Y component alone
will have the same variance. So we have the relative uncertainty in amplitude

RelAmpUncertainty(M,N) =

√
M − 1

2N
and the uncertainy in phase (in radians) will have the same numerical value. In
degrees this is

RelPhaseUncertainty(M,N) =

√
M − 1

2N
180
π
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4 Theory and Experiment

I wrote a simple program to test this model. This program allows the user
to try N transmitters and M beams. This test case is 2 dimensional, which
should make no difference. Each transmitter has an amplitude of 1 in the
constant power case, and an average squared amplitude of 1 in the variable
power case. We assume all the targets are far enough away so that the angles to
the transmitters are the same. The transmitters are randomly located between
−N/2 and N/2 meters at an average density of 1 per meter. The beam angles
are randomly chosen between ±45 degrees of the zenith. The wavelength is
randomly chosen to be 0.0567 . The results are:

M N Amplitude Ampl. Variation Phase Variation
Theory Exp Theory Exp Theory Exp

10 500 158.1 154.2 15 9.85 5.44 5.05
10 5000 1581 1531 47.4 73.9 1.71 1.93
10 50000 15811 15772 150 177 0.54 0.47
10 500000 158114 158231 474 438 0.17 0.14
100 5000 500 496 49.75 50.04 5.70 5.58
100 50000 5000 4979 157.3 159.6 1.80 1.82
100 500000 50000 49928 497.5 496.1 0.57 0.53
1000 50000 1581 1578 158 161 5.72 5.65
1000 500000 15811 15826 500 646 1.81 1.86

The agreement of theory and experiment for large M , values 100 or greater,
is excellent. The agreement for small M is OK but not great. This is due to
two causes - the real distribution is not as Rayleigh predicts for M as small as
10 (his solution is only for large M), and the distribution cannot be measured
well with only 10 samples.

5 Constant power transmitters

It complicates the design considerably if each transmitter has to be able to
control its amplitude as well as its phase. How much do we give up with constant
amplitude? First, we need to find the expected amplitude at each transmitter.
We start with the known vector and treat the remaining M − 1 vectors as
a random walk. We get a diagram that looks like figure 1, except that the
displacement from the origin is 1/

√
M and the circular error region now has

radius
√

M−1
M , and is now much larger than the distance to the origin. This

can be thought of as the random walk of radius nearly 1 (actually
√

M−1
M with

the origin shifted slightly by 1/
√
M). Note that this distribution, and the

distribution after clipping, depends only on the value of M ; the variation with
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N is taken care of by summing N of these distributions.
When we keep the phase, but make the power constant, it’s the same as

mapping every point in the phase plane along a radial onto the single point
where that radial intersects the unit circle. We can treat this as follows.

The random part of the distribution consists of M-1 steps of size 1/
√
M .

From Rayleigh, the odds of finding this in the ring between distance r and
r + dr is

2M
M − 1

e
−r2 M

M − 1 rdr

To get the area density, we divide by the area of the ring to get

Density(r) =
1
π

M

M − 1
e
−r2 M

M − 1

We want the expected relative value of the X component of the resulting vector.
This is computed by the following equation.∫ 2π

0

cos(θ) lim
M→∞

[
1
π

M

M − 1

∫ ∞
0

e−(r(q,θ))2 M
M−1 q dq

]
dθ

1/
√
M

Where r(q, θ) is the distance from the center of the distribution

r(q, θ) =
√

(q cos θ − 1/
√
M)2 + (q sin θ)2

The part of the formula in square brackets is the probability that the phase
is θ. This turns out to be a complicated expression which can be simplified if
we only consider large M , which explains the limit. The outer integral simply
averages over all angles, taking the contribution to the X component times the
probability that angle is found. Finally, we take the ratio to 1/

√
M since that’s

the expected value in the variable power case.
We start by expanding the expression for r and using sin2 θ + cos2 θ = 1 to

get

r2(q, θ) = q2 − 2√
M
q cos θ +

1
M

and so the inner probability becomes

1
π

M

M − 1

∫ ∞
0

e
−(q2 − 2√

M
q cos θ +

1
M

)
M

M − 1 q dq

Since we are only interested in M large, we can drop the terms of 1/M which
are the square of the terms with 1/

√
M . To this order, M/(M − 1) = 1, so we

can drop these terms as well, to get

1
π

∫ ∞
0

e
−(q2− 2√

M
q cos θ)

q dq
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which can be re-written as

1
π

∫ ∞
0

e−(q2)e
2√
M
q cos θ)

q dq

We expand the second exponential into a power series and keep only the first
term to get:

1
π

∫ ∞
0

e−(q2)(1 +
2√
M
q cos θ)q dq

The alert reader (if any) might well ask if this is legitimate, since the missing
terms are multiplied by q, which ranges to infinity. However, here we are saved
by the e−q

2
term, which tends to 0 even more rapidly, so for a sufficiently large

M this will be OK. This gives us

1
π

∫ ∞
0

qe−q
2

dq +
1
π

2 cos θ√
M

∫ ∞
0

q2e−q
2

dq

The first term will not contribute to the outer integral, since it has no depen-
dence on θ and hence integrates to 0 over one whole cycle. This leaves

1
π

2 cos θ√
M

∫ ∞
0

q2e−q
2

dq

This is a well known definite integral, value
√

(π)/4, leading to

1√
M

cos θ
2
√
π

This is the non-uniform part of the probability that the phase is θ. Now we
integrate over all phases. If the phase is θ, the contribution to the phase sum is
cos θ, so we multiply the contribution times the probability of that contribution
to get

1√
M

1
2
√
π

∫ 2π

0

cos2 θ dθ

but cos2 θ = 1/2 + 1/2 sin(2θ) has an average value of 1/2, so the last integral
has a value of π, leading to an expected output voltage of

1√
M

√
π

2

We compare this to the expected value with no clipping, 1/
√
M , to get the final

relative amplitude of √
π

2
To check the previous calculation, we can also evaluate the clipping process

numerically, and compared this to the analytical result with no clipping. We do
this for various values of M :
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M multiplier
4 0.94603
8 0.915935
16 0.901281
32 0.894021
64 0.890361
128 0.888486
256 0.887506

65536 0.886277
1048576 0.886242

It certainly appears reasonable that this value is converging to
√
π/2 =

0.88622692545275801364 for large enough M , and the rate of convergence is
right (1/

√
M is about 1000 for the largest cases, and the result differs from

the analytical limit by roughly 1 part in 1000). So we’ll assume
√
π/2 as the

expected value, and then the EIRP is about π/4, or about 0.7853 of the variable
amplitude case. This is a loss of about 1.049 db.

The expected amplitude is then

Amplitude(M,N) =
√
π

2
A0

N√
M

where A0 is the amplitude induced by a single transmitter. Equivalently the
EIRP per beam is

EIRP(M,N) =
π

4
P0
N2

M

where P0 is the EIRP of a single transmitter. To find the expected variance in
voltage, we now have the sum of the X component of N unit vectors oriented
at random. This variance will be 0.5N , and the standard deviation will be the
square root of this. The Y component alone will have the same variance. So we
have the relative uncertainty in amplitude

RelAmpUncertainty(M,N) =
2√
π

√
M

2N

and the uncertainy in phase (in radians) will have the same numerical value. In
degrees this is

RelPhaseUncertainty(M,N) =
2√
π

√
M

2N
180
π

This simple model gives the following results.
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M N Amplitude Ampl. Variation Phase Variation
Theory Exp Theory Exp Theory Exp

10 500 140.1 137.4 15.8 12 6.46 8.16
10 5000 1401 1388 50 53 2.04 2.09
10 50000 14013 14086 158 208 0.65 0.47
10 500000 140125 141057 500 458 0.20 0.16
100 5000 443 441 50 51.6 6.47 6.15
100 50000 4431 4427 158 157 2.04 2.15
100 500000 44311 44310 500 533 0.65 0.73
1000 50000 1401 1401 158 163 6.47 6.49
1000 500000 14013 14016 500 611 2.04 2.03

Once again the agreement is excellent for large M and OK for small M .

6 Phase quantization

What if the phase is quantized? If there are P possible phases, then the nearest
available phase will be uniformly distributed across ±2π/P . Thus the average
contribution in the desired direction is∫ π/P

−π/P cos θ dθ

2π/P

This reduces to
P

π
sin(

π

P
)

The following table shows the degradation, as a multiplier from the best case of
arbitrary phase availability.

Number of phases, P amplitude power db
2 0.636620 0.405285 -3.922398
3 0.826993 0.683918 -1.649960
4 0.900316 0.810569 -0.912098
6 0.954930 0.911891 -0.400572
8 0.974495 0.949641 -0.224405
12 0.988616 0.977361 -0.099448
16 0.993587 0.987215 -0.055883
32 0.998394 0.996791 -0.013957
64 0.999598 0.999197 -0.003488

7 Evenly spaced transmitters

What if the transmitters are evenly spaced? Then the signals will presumably be
more correlated, since for each direction you are really picking just two random
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variables (initial phase and delta) instead of N . The following experiment shows
this effect for variable power:

M N Amplitude Ampl. Variation Phase Variation
Theory Exp Theory Exp Theory Exp

10 500 158.1 175.9 15 38 5.44 10.06
10 5000 1581 1543 47 82 1.71 0.56
10 50000 15811 15770 150 87 0.54 0.13
10 500000 158114 158088 474 52 0.17 0.01
100 5000 500 511 49 65 5.70 5.91
100 50000 5000 5072 157 506 1.80 0.44
100 500000 50000 50101 497 717 0.57 0.04
1000 50000 1581 1578 158 149 5.72 4.32
1000 500000 15811 15789 500 490 1.81 0.50

Here’s the same experiment using constant power:

M N Amplitude Ampl. Variation Phase Variation
Theory Exp Theory Exp Theory Exp

10 500 140.1 149.9 15.8 33.8 6.46 10.2
10 5000 1401 1394 50 83 2.04 1.52
10 50000 14013 14100 158 171 0.65 0.28
10 500000 140125 140978 500 321 0.20 0.06
100 5000 443 448 50 66 6.47 6.47
100 50000 4431 4469 158 463 2.04 0.97
100 500000 44311 44377 500 673 0.65 0.30
1000 50000 1401 1400 158 149 6.47 5.26
1000 500000 14013 14001 500 489 2.04 1.10

Except in the smallest cases, the variance in the amplitude seems to be a little
more than predicted by the random model, and the variance in phase somewhat
less. The random model still provides a fairly good prediction, however.

8 Extensions

Consider polarization.
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